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In recent works [1–3], the authors brought attention to non-linear oscillators with non-
polynomial characteristics,

.x þ xa ¼ 0; ð1Þ

where a ¼ ð2k þ 1Þ=ð2n þ 1Þ: In particular, it was shown how to apply the harmonic balance
method under arbitrary non-negative integers k and n [3]. Oddness of both numerator and
denominator of the exponent is important. If one of the parts of the ratio is even then system (1) is
not an oscillator. Obviously, the numbers a represent a subset of the positive rational numbers,
but do not include all of them. Note that the particular case n ¼ 0 has been investigated in the
literature for a long time. For example when investigating degeneralized cases of stability
problems, A.M. Lyapunov introduced special periodic functions in order to represent the
solutions [4]. Another version of the special functions was used in Ref. [5]. In order to deal with
the class of elementary functions and get more physical insight, asymptotic approaches are being
developed [6,7], see also references therein. The physical nature of such asymptotics is due to the
fact that the corresponding potential x2kþ2=ð2k þ 2Þ approaches the quare-well form as k-N: As
a result, the limit system oscillates in the interval �1pxp1 between the two absolutely rigid and
perfectly elastic barriers located at the ends of the interval.
As was shown in Ref. [6], for arbitrary positive odd integer a ¼ 2k þ 1; a periodic solution of

oscillator (1) can be represented in the form

x ¼ X ðtÞ; t ¼ tðt=aÞ; ð2Þ

where X ð�tÞ ¼ �X ðtÞ; and

tðxÞ ¼
2

p
arcsin sin

px
2
; tðxÞ ¼ tðxþ 4Þ ð3Þ

is the periodic saw-tooth function of the period T ¼ 4a: Both the function X ðtÞ and the parameter
a are determined by successive approximations in the form of series as those reproduced below in
the modified form.
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In this paper, we generalize solution (2) as

x ¼ sgnðtÞX ðjtjÞ: ð4Þ

Such a modification enables one to consider a more general class of oscillators:

.x þ sgnðxÞjxja ¼ 0: ð5Þ

In the case a ¼ ð2k þ 1Þ=ð2n þ 1Þ; oscillator (5) is absolutely identical to the original one,
Eq. (1), as well as solution (4) is identical to solution (2) due to its oddness with respect to t: But
the generalized form of Eq. (5) allows the exponent a to continuously take any non-negative real
value, such as odd, even, rational or irrational: 0paoN: For example, .x þ signðxÞjxj3=2 ¼ 0 is an
oscillator with the odd characteristic, whereas .x þ x3=2 ¼ 0 is not an oscillator at all. The form of
solution (4) is dictated by the symmetries of system (5). Note that the characteristic of oscillator
(5) is given by the potential V ðxÞ ¼ �jxjaþ1=ðaþ 1Þ such that the differential equation of motion
(5) can be represented in the standard form .x ¼ V 0ðxÞ regardless of the presence of the non-
smooth function jxj:
By applying transformation (4) to the solution X ðtÞ derived in Ref. [6], one obtains

x ¼ A sgnðtÞ jtj �
jtjaþ2

aþ 2
þ

a
2ðaþ 2Þ

jtj2aþ3

2aþ 3
�

jtjaþ2

aþ 2

� �
þ?

� �
; ð6Þ

a2 ¼
aþ 1

Aa�1 1þ
a

2ðaþ 2Þ
þ

a2

4ðaþ 2Þ2
1þ

aþ 2

að2aþ 3Þ

� �
þ?

� �
: ð7Þ

where A is an arbitrary parameter characterizing the amplitude, whereas another arbitrary
parameter t0 can be introduced by substituting t-t þ t0:
For any jtjp1 and a; convergence of series (6) and (7) is not less rapid than that of the

geometric series with the common ratio 1
2: However, due to the structure of the solution, best

results are achieved for large exponents a; when a quasi-harmonic approach may give a significant
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Fig. 1. Analytical and numerical solutions of the modified oscillator shown by continuous and dashed lines,

respectively, a ¼ 3
2
:
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error due to a strongly unharmonic temporal mode shape of the vibration. Expressions (6) and (7)
show explicitly three terms of each of the series that were taken for calculations.
For example, Figs. 1 and 2 show solution (6) in comparison with numerical solution for two

different exponents a ¼ 3
2
and

ffiffiffiffiffiffiffiffiffiffi
2003

p
; respectively, and the same parameter A ¼ 1: As the figures

show the analytical and numerical solutions are matching better as the exponent a increases.
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Fig. 2. Approaching the saw-tooth temporal mode shape with a good match of analytical and numerical solutions

shown by continuous and dashed lines, respectively, a ¼
ffiffiffiffiffiffiffiffiffiffi
2003

p
:
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